Addition Reactions of Heterocyclic Compounds. Part LII. ${ }^{1}$ Further Adducts from Substituted 2-Methylquinolines and Dimethyl Acetylenedicarboxylate

By R. Morrin Acheson * and Donald F. Nisbet, Department of Biochemistry, South Parks Road, Oxford OX1 3QU

Abstract

The 'dark red' adducts from 2-methylquinolines and dimethyl acetylenedicarboxylate have been resolved into two types and identified as hexamethyl 6,7,7a,8-tetrahydrobenzo[f]cyclopenta[a]quinolizine-6,7,7a,8,9,10hexacarboxylates [e.g. (12)], which are readily converted into tetramethyl 5 -(2-quinolyl) cyclopenta-2,4-diene-1,2,3,4-tetracarboxylates. Other products from these reactions were also identified from their n.m.r., mass, and u.v. spectra, and included benzo[c]quinolizine-, azepino[1,2-a]quinoline-, and 2 -propenylquinoline-carboxylic esters; 2-(trismethoxycarbonylphenyl)quinolines were also obtained from 2,8-dimethyl- and 2,4,6,8-tetramethylquinoline. The formation of these products is discussed.

2-Methylouinoline reacts ${ }^{2}$ with dimethyl acetylenedicarboxylate in acetonitrile to give the 4a-methyl-4a H benzo[c]quinolizine (1), the azepine (6), and small amounts of 'dark red ' and ' blue ' adducts. Two types of 'dark red' adduct have now been isolated from 2methylquinoline and some of its methyl derivatives, although others ${ }^{3}$ give no trace of this sort of compound, and the structures of these substances, and of other compounds isolated from these reactions, are the subject of the present paper. The blue adducts are currently under investigation; an X-ray crystallographic structure determination is in progress.

(1)
(2) $10-\mathrm{Me}$
(3) $6,8,10-\mathrm{Me}_{3}$
(4) $8-\mathrm{Me}$
(4) $8-\mathrm{Me}$
(5) $6,8-\mathrm{Me}_{2}$

(6) $10-E$
(7) $1-\mathrm{Me}-10-\mathrm{E}$
(B) $11-\mathrm{E}$
(9) $3-\mathrm{Me}-10-\mathrm{E}$
(10) $3-\mathrm{Me}-10-\mathrm{E}\left(\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}\right)$ (11) 3,5-Me2-10-E
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$ in all formulae
unless stated otherwise

2,6- and 2,8-Dimethyl-, 2,4,6-trimethyl-, and 2,4,6,8-tetramethyl-quinolines, with dimethyl and diethyl acetylenedicarboxylates in acetonitrile, gave the benzo[c]quinolizines (2)-(5), the azepines (7), (9) -(11), which were identified by comparison of their spectra ${ }^{4}$ with those of numerous analogues, ${ }^{2,3}$ and the $1: 1$ molar adducts (29)-(31), the spectra of which were similar to that ${ }^{2}$ of (28). No other adducts were obtained from 2,6-dimethyl- and 2,4,6-trimethyl-quinolines, but additional compounds have been obtained from the other quinolines and these will be discussed.

If acetonitrile is employed as solvent for the reactions of 2 -methyl- and 2,8-dimethyl-quinoline with dimethyl acetylenedicarboxylate, mixtures are formed. It was
${ }^{1}$ Part XLI, R. M. Acheson, N. D. Wright, and P. A. Tasker, J.C.S. Perkin I, 1972, 2918.
${ }^{2}$ R. M. Acheson, J. M. F. Gagan, and D. R. Harrison, J. Chem. Soc. (C), 1968, 362.
found almost impossible to separate the two types of red 1:3 molar adduct from each other, and from the azepines [(6) and (7) respectively], by chromatography over alumina. However, when methanol was used as reaction solvent, the red and blue adducts were the only isolable products. For both these quinolines the 'first ' red adducts precipitated first from the reaction mixtures in a fairly pure condition, although the 'second' red adducts could not be resolved from their isomers. Complete separation of the corresponding red adducts from 2,6,8-trimethylquinoline was achieved chromatographically.

The 'first ' and 'second ' red adducts from the alkylquinolines are thought to be geometrical isomers of the benzo[f]cyclopenta[a]quinolizines (12)-(14). The n.m.r. spectra of the red adducts in deuteriochloroform showed that although the 2 -methyl groups of the original quinoline had disappeared the remaining protons were present at their original positions; in trifluoroacetic acid reversible protonation occurred to give quinolinium cations with a low-field doublet assigned to the 12 proton. The remainder of the structure of the red adducts must therefore be attached to the 1 - and 2 positions of the quinoline system. The doublets ($J c a$. 10 Hz) at about $\tau 3.4$ and 2.9 are assigned to the 12 - and ll-protons, the latter being deshielded by the 10 methoxycarbonyl group in a similar way to the 6 hydrogen atom of compounds (6)-(11).

The spectra of the 'first' red adducts (12a)-(14a) possess one-proton singlets at $\tau c a .4 \cdot 5$, assigned to the 8 -protons, and doublets at ca. $5 \cdot 1$ and $6 \cdot 1(6-\mathrm{H}$ and $7-\mathrm{H}$, respectively); the corresponding resonances for the 'second' red adducts appear at $\tau c a .4 \cdot 9,5 \cdot 3$, and $5 \cdot 7$. The 'first' red adducts (12a) - (14a) show a fairly highfield ester resonance, assigned to the methoxycarbonyl group at position 6 which in one of its configurations could be shielded by the benzenoid ring; this type of shielding affects the 11 -ester group of compound (8). ${ }^{2}$

In trifluoroacetic acid solution cations [e.g. (16)] are

[^0]formed. No one-proton singlets now appear between $\tau 2.5$ and 5.5 and the signals due to the 8 -proton and the

Scheme 1
added 9 -proton cannot be observed clearly as they are obscured by the ester methyl resonances. The 6-

(19)
(20) $4^{\prime \prime}-B r$
protons, adjacent to the cationic centre in the protonated ' first' red adducts, show a downfield shift of ca. 0.5
${ }^{5}$ R. M. Acheson, N. J. Earl, P. Higham, R. E. Richards, G. A. Taylor, and J. M. Vernon, Proc. Chem. Soc., 1960, 281.
p.p.m. from their positions in deuteriochloroform solution. A smaller shift (ca. 0.3 p.p.m.), which is difficult to observe accurately because of the ester resonances, is shown by the higher field 7 -protons. The ' second ' red adduct (12 b) shows a similar phenomenon, but the 7 -proton signal is clearly below the ester region. However, for (13 b) and (14b), where a 4 -methyl group is present, the 6- and 7 -protons appear as an apparent singlet at $\tau 5$ and a relatively high field ester group, absent in (12 b), is present. The presence of a 4 -methyl group must affect the orientation of the 6-methoxycarbonyl group, changing it from that preferred in (12b) and thus causing the spectral changes. Otherwise the less likely explanations either that the 7 -proton signal must move further downfield than that of the 6 -proton when the molecule is protonated, or that the initial assignments for deuteriochloroform must be reversed, are necessary.

The"u.v. spectra of all the red adducts in methanol are similar, particularly in the long-wavelength regions, and on acidification all change owing to the formation of yellow cations [e.g. (16)], showing conjugation (Table 2) similar to that ${ }^{5}$ of the quinolizinium ion (17).

The base peaks of the mass spectra of the pure red adducts all occur at $M-\mathbf{1 4 4}$, corresponding to loss of the elements of dimethyl fumarate; the important peaks appearing in the mass spectrum of dimethyl fumarate at $m / e 114,113,85$, and 59 are also observed. Loss of this fragment is readily accounted for by the electrocyclic process indicated in the ion-radical structure (18) to give the corresponding cation [cf. structure (19)]. Loss of one ester group also occurs from the molecular ion; loss of the 7 a-ester group would give a vinylquinolinium cation.

The ' first' red adduct (12a) with bromine in boiling glacial acetic acid gave a yellow monobromo-derivative, assigned the quinoline structure (20), and dimethyl fumarate. The single proton of the cyclopentadienyl ring could by $[1,5]$ thermal shifts move to any position in the ring [e.g. (23)], but the most conjugated structure shown is preferred on grounds of stability and colour. The u.v. spectrum of this bromoquinoline was almost unchanged on acidification. In the n.m.r. spectrum deshielding of the 5 -proton by the peri-bromine atom is apparent. ${ }^{6}$ The cyclopentadiene ring proton appears in the aromatic region.

Debromination of compound (20) gave the quinoline (19), which was also obtained by treating the 'first' red adduct (12a) with zinc in acetic acid. The n.m.r. spectrum in deuteriochloroform shows that an aromatic proton is no longer deshielded, while in trifluoroacetic acid the 3^{\prime} - and 4^{\prime}-protons appear as doublets in the positions expected for a quinolinium salt; the cyclopentadiene ring proton signal for both compounds (19) and (20) appears at $\tau 2 \cdot 43$ in this solvent.
${ }^{6} C f$. R. A. Heacock, O. Hutzinger, B. D. Scott, J. W. Daly, and B. Witkop, J. Amer. Chem. Soc., 1963, 85, 1825; L. M. Jackman and S. Sternhell, 'Applications of Naclear Magnetic Resonance Spectroscopy,' 2nd edn., Pergamon, London, 1969, p. 206.

Table 1
N.m.r, spectra (τ values; J in Hz ; tetramethylsilane as internal reference; solutions in deuteriochloroform)

Compound	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$		$\mathrm{CO}_{2} \mathrm{Me}$
(12a)	60	$\operatorname{ArH}(4), 2.7-3 \cdot 1 \mathrm{~m} ; 12-\mathrm{H}, 3.45 \mathrm{~d} ; 11-\mathrm{H}, 2.99 \mathrm{~d} ; J_{11.12} 10 \cdot 4 ; 6-\mathrm{H}, 5.02 \mathrm{~d}$ $7-\mathrm{H}, 6 \cdot 10 \mathrm{~d} ; J_{6,7} 9 \cdot 3 ; 8-\mathrm{H}, 4 \cdot 41$	6.08, 6.23, 6.35, $6.37,6.37,6.71$
(12a) ${ }^{\text {a,b }}$	60	$4-\mathrm{H}, 2.19 \mathrm{~d} ;{ }^{c} J_{3.4} 8.7 ; \operatorname{ArH}(3), 11-\mathrm{H}, 1.43-2.0 \mathrm{~m} ; 12-\mathrm{H}, 0.80 \mathrm{~d} ; J_{11,12}$ $9 \cdot 6 ; 6-\mathrm{H}, 4.54 \mathrm{~d} ; J_{6,7} 8 \cdot 8 ; 7,8,9-\mathrm{H}, 5 \cdot 7-6 \cdot 2^{d}$	$5 \cdot 83,6 \cdot 02,6 \cdot 10,6 \cdot 10,6 \cdot 19,6.63$
(12b)	60	$\operatorname{ArH}(4), 2.6-3.1 \mathrm{~m} ; 12-\mathrm{H}, 3.46 \mathrm{~d} ; 11-\mathrm{H}, 2.89 \mathrm{~d} ; J_{11,12} 10.4 ; 6-\mathrm{H} 5.32 \mathrm{~d}$; $7-\mathrm{H}, 5.89 \mathrm{~d} ; J_{6,7} 8.7$; $8-\mathrm{H}, 4.81$	6.12, 6.24, 6.31, 6.33, 6.38, $6 \cdot 40$
(12b) ${ }^{\text {a }}$	60	$\begin{aligned} & \mathrm{ArH}(4), 11-\mathrm{H}, \mathrm{l} .2-2.0 \mathrm{~m} ; 12-\mathrm{H}, 0.81 \mathrm{~d} ; J_{11,12} 8.8 ; 6-\mathrm{H}, 4.74 \mathrm{~d} ; 7-\mathrm{H}, \\ & 5.59 \mathrm{~d} ; J_{6.7} 7.7 ; 8,9-\mathrm{H}, 5.8-6.3{ }^{d} \end{aligned}$	$5.86,5.91,6.01-6.26$ (12)
(13a)	60	$4-\mathrm{Me}, 7.88 ; \operatorname{ArH}(3), 2 \cdot 7-3.2 \mathrm{~m} ; 12-\mathrm{H}, 3.46 \mathrm{~d} ; 11-\mathrm{H}, 2.99 \mathrm{~d} ; J_{11.12} 10 \cdot 0$; 6-H, $5 \cdot 12 \mathrm{~d} ; 7-\mathrm{H}, 6.20 \mathrm{~d} ; J_{6.7} 8.4$; 8-H, 4.51	6.11, 6.19, 6.31, 6.40, 6.40, 6.68
(13a) ${ }^{\circ}$	60	$\begin{aligned} & \text { 4-Me, } 7 \cdot 31 ; \operatorname{ArH}(3), 11-\mathrm{H}, 1 \cdot 6-2 \cdot \operatorname{lm} ; 12-\mathrm{H}, 0.89 \mathrm{~d} ; J_{11.12} 8 \cdot 4 ; 6-\mathrm{H}, \\ & 4.56 \mathrm{~d} ; J_{6,7} 8 \cdot 0 ; 7,8,9-\mathrm{H}, 5 \cdot 8-6 \cdot 5 \mathrm{~d} \end{aligned}$	5.9-6.3 (15), 6.43
(13b) ${ }^{\text {e }}$	60	$4-\mathrm{Me}, 7.88 ; \operatorname{ArH}(3), 11-\mathrm{H}, 2.7-3.2 \mathrm{~m} ; 12-\mathrm{H}, 3.41 \mathrm{~d} ; J_{11.12} 10.5$; 6-H, $5 \cdot 47 \mathrm{~d} ; 7-\mathrm{H}, 5 \cdot 84 \mathrm{~d} ; \mathrm{J}_{6,7} 10 ; 8-\mathrm{H}, 4.95$	6.1-6.5 (18)
(13b) ${ }^{\text {a }}$	60	6,7-H, 4.98e,	
(14a)	60	$\operatorname{ArH}(2), 3 \cdot 10,3.13 ; \operatorname{ArMe}, 7.81,7.91 ; 12-\mathrm{H}, 3.46 \mathrm{~d} ; 11-\mathrm{H}, 3.03 \mathrm{~d} ; J_{11,12}$ $10.0 ; 6-\mathrm{H}, 5.13 \mathrm{~d} ; 7-\mathrm{H}, 6.20 \mathrm{~d} ; J_{6.7} 8.5$; $8-\mathrm{H}, 4.55$	6.10, 6.18, $6 \cdot 31,6 \cdot 39,6 \cdot 43,6 \cdot 67$
(14a) ${ }^{\text {a }}$	60	$\begin{aligned} & \mathrm{ArH}(2), 7-\mathrm{H}, 1.5-2.1 \mathrm{~m} ; \operatorname{ArMe}(6), 7.37 ; 12-\mathrm{H}, 0.98 \mathrm{~d} ; J_{11.12} 8.7 ; 6-\mathrm{H}, \\ & 4.58 \mathrm{~d} ; J_{6.7} 7.3 ; 7,8,9-\mathrm{H}, 5.8-6.5 \mathrm{~d} \end{aligned}$	5.9-6.3 (15), $6 \cdot 47$
(14b)	100	$\operatorname{ArH}(2), 3.08 ; \operatorname{ArMe}, 7.78,8.03 ; 12-\mathrm{H}, 3.36 \mathrm{~d} ; 11-\mathrm{H}, 2.95 \mathrm{~d} ; J_{11,12} 10.0$; $6-\mathrm{H}, 5.26 \mathrm{~d} ; 7-\mathrm{H}, 5.61 \mathrm{~d} ; J_{6.7} 12 \cdot 0 ; 8-\mathrm{H}, 4.95$	$6 \cdot 10,6 \cdot 30,6 \cdot 30,6.39,6.39,6.52$
(14b) ${ }^{\circ}$	60	$\operatorname{ArH}(2), 1.98-2.15 ; \operatorname{ArMe}, 7.36,7.41 ; 12-\mathrm{H}, 1.01 \mathrm{~d} ; 11-\mathrm{H}, 1.86 \mathrm{~d} ;$ $J_{11.12} 9 \cdot 3 ; 6,7-\mathrm{H}, 4 \cdot 98 ;{ }^{f} 8,9-\mathrm{H}, 5 \cdot 9-6.5{ }^{\text {d }}$	$5 \cdot 89,6 \cdot 13,6 \cdot 13,6 \cdot 13,6.23,6.48$
(15)	60	6-H, $5 \cdot 32 \mathrm{~d} ; 7-\mathrm{H}, 5.90 \mathrm{~d} ; J_{6.7} 9 \cdot 0 ; 8-\mathrm{H}, 4.78$	6.18-6.42 (24)
(15) ${ }^{\circ}$	60	$\operatorname{ArH}(5), 1 \cdot 1-2.0 \mathrm{~m} ; 12$-maleate $\mathrm{H}, 2.78 ; 12-\mathrm{CH}_{2}, 5.8-6.35 ;{ }^{\text {a }} 6-\mathrm{H}$, $4.74 \mathrm{~d} ; 7-\mathrm{H}, 5.58 \mathrm{~d} ; J_{6.7} 8 ; 8,9-\mathrm{H}, 5.8-6.35{ }^{\text {d }}$	5.9-6.35 (24)
(19)	60	$\mathrm{ArH}(6), \mathrm{CHE}, 2.15-3.1 \mathrm{~m}$	5.96, 6.25, 6.31, 6.49
(19) ${ }^{\circ}$	60		6.00, 6.00, 6.00, 6.23
(20)	60	$\operatorname{ArH}(4), \mathrm{CHE}, 2.15-2.9 \mathrm{~m} ; 5^{\prime}-\mathrm{H}, 1.92 \mathrm{~m}$	5.95, 6.24, 6.27, 6.43
(20) ${ }^{\text {a }}$	60	$3^{\prime}, 6^{\prime}, 7^{\prime}-\mathrm{H}, 1.72 \mathrm{br} ; 5^{\prime}-\mathrm{H}, \mathrm{l} \cdot \mathrm{l}-\mathrm{l} .5 \mathrm{br}, \mathrm{m} ; 8^{\prime}-\mathrm{H}, 2.98 \mathrm{br}$; CHE, 2.43	$5 \cdot 98,5 \cdot 98,5 \cdot 98,6 \cdot 19$
(24)	60	$\mathrm{ArH}(6)$ and $\mathrm{CHE}, 2.2-3.05 \mathrm{~m}$; N.N. $\cdot \mathrm{CH}_{2}, 4 \cdot 45 \mathrm{~d}, 4.74 \mathrm{~d}, J 2 \cdot 7,{ }^{h}$ and $5.02 \mathrm{~d}, 5.32 \mathrm{~d}, \mathrm{~J} 8.0^{\text {h }}$	5.98, 6.19,9 6.34, 6.97
(25)	60	$4-\mathrm{H}, 3.76 \mathrm{~d} ;{ }^{\text {c }} J_{3.4} 8 \cdot 0$; 1,2,3-H, $2 \cdot 9-3.55 \mathrm{~m} ; 6($? $)-\mathrm{H}, 5.29 \mathrm{~d}, J 8.8$; aliphatic H, $5 \cdot 9-7 \cdot 14 \mathrm{~m}$ (4) ${ }^{\text {a }}$ and $7 \cdot 31 \mathrm{br}$ (4)	6.30-6.38 (15), 6.73
(26)	60	4-H, $3.81 \mathrm{~d} ;{ }^{\text {e }} J_{3.4} 7.6 ; 1,2,3-\mathrm{H}, 3.0-3.6 \mathrm{~m}$; aliphatic H (11), $5.7-$ $7.95 \mathrm{~m}{ }^{\text {d }}$	6.32-6.40 (15), 6.92
(27)	60	4-Me, $7 \cdot 90 ; 1,2,3-\mathrm{H}, 3 \cdot 1-3 \cdot 4 \mathrm{~m}$; aliphatic $\mathrm{H}(11), 5.6-8 \cdot 1 \mathrm{~m}{ }^{\text {d }}$	6.33-6.40 (15), 7.03
(33)	60	$\operatorname{ArH}(3), 2 \cdot 41,2 \cdot 47,2 \cdot 62 \mathrm{br} ; \mathrm{ArMe}, 7 \cdot 30,7 \cdot 34,7 \cdot 50 ; 5^{\prime}-\mathrm{H}, 2 \cdot 16$; maleate H, 4.74	6.07, 6.07, 6.20, 6.40, 6.59
(34)	60	$\mathrm{ArH}(3), 5^{\prime}-\mathrm{H}, 2 \cdot 42-2.7 \mathrm{~m} ; \mathrm{ArMe}, 7.36,7.36,7.52 ; \mathrm{CHE} \cdot \mathrm{CH}_{2} \mathrm{E}, 4.81 \mathrm{t}$; CHE•CH2 $\mathrm{E}, 7 \cdot 18 \mathrm{~d} ; \mathrm{J} 6.0$	6.15, $6 \cdot 17,6 \cdot 33,6 \cdot 52,6 \cdot 67$
(35)	60	$\mathrm{ArH}(3), 5^{\prime}-\mathrm{H}, 2.4-2.72 \mathrm{~m}$; ArMe, 7.28, $7.34,7.50$	6.13, 6.13, $6 \cdot 28$
(36)	60	$\begin{gathered} 3-\mathrm{H}, 2 \cdot 92 ; \mathrm{c}^{4} \quad 4-\mathrm{Me}, 7.78 ; 5,6,7,8-\mathrm{H}(6), 7 \cdot 0-9.0 \mathrm{~m} ;{ }^{d} 6,8-\mathrm{Me}_{2}, 8.58 \mathrm{~d}(J \\ 6 \cdot 7) \text { and } 8.88 \mathrm{~d}(J 5 \cdot 3) ; 5^{\prime}-\mathrm{H}, 2 \cdot 56 \end{gathered}$	6.15, 6.15, $6 \cdot 27$
(37)	60	$3,5^{\prime}-\mathrm{H}, 2 \cdot 53,2 \cdot 73$; d $4-\mathrm{Me}, 7 \cdot 78 ; 5,6,7,8-\mathrm{H}(6), 6.9-9.0 \mathrm{~m}$; ${ }^{d} 6,8-\mathrm{Me}$, $8.68 \mathrm{~d}(J 6.4)$ and $8.91 \mathrm{~d}(J 5.0)$; $6^{\prime}-\mathrm{OMe}, 6.44$	6.13, 6.19, $6 \cdot 19$
(38)	100	$\mathrm{ArH}(4), 5^{\prime}-\mathrm{H}, 2.2-2.53 \mathrm{~m} ; 4-\mathrm{H}, \mathrm{l} .71 \mathrm{~d} ; \mathrm{J}_{3.4} 8.6 ; 8$ - $\mathrm{Me}, 7.17$	$6.05,6.05,6.20$
(38a)	60	$\operatorname{ArH}(5), 1.7-2.01 ; 4-\mathrm{H}, 0.80 \mathrm{~d} ; J_{3,4} 8.6 ; 8 \mathrm{Me}, 7.06$	$5 \cdot 85,5 \cdot 85,6 \cdot 20$
(39)	60	$\operatorname{ArH}(4), 5^{\prime}-\mathrm{H}, 2.3-2.7 \mathrm{~m} ; 4-\mathrm{H}, 1.90 \mathrm{~d} ; J_{3,4} 8.0 ; 8-\mathrm{Me}, 7.30 ; 6^{\prime}$-OMe, 6.67	6.12, 6.17, $6 \cdot 17$
(40) ${ }^{\text {i }}$	100	1-Me, 7.38; $\operatorname{ArH}(3), 2.8-2.95 \mathrm{~m} ; 5-\mathrm{H}, 3.08 \mathrm{~d} ;{ }^{\boldsymbol{j}} \mathbf{6 - H}, 2.07 \mathrm{~d} ;{ }^{j} J_{5.6} 10.0$; $10-\mathrm{H}_{\mathrm{B}}, 5 \cdot 60 \mathrm{~m}:{ }^{k} 11-\mathrm{H}_{\mathrm{c}}, 6.90 \mathrm{~m} ;{ }^{k} 11-\mathrm{H}_{\mathrm{A}}, 7 \cdot 67 \mathrm{t} ; J_{10,11 \mathrm{~A}} 10 \cdot 2, J_{11_{\mathrm{A}} \cdot 11 \mathrm{~B}}$ $-13 \cdot 0 ; J_{10,11 \mathrm{~B}} 10 \cdot 3$	6.07, 6.27, $6.27,6.31,6.57,6 \cdot 62$
(41)	100	2,4-H, 3.08, 3.15; 5-H, $3 \cdot 17 \mathrm{~d}$; 6-H, 2.14d; $J_{5.6} 9 \cdot 4$; ArMe, 7.45, 7.71; $\mathrm{CH}_{2}{ }^{\prime} \mathrm{CHE}, 5 \cdot 68 \mathrm{t}, 6 \cdot 92,{ }^{\text {, }} 7 \cdot 7 \mathrm{~m}$; a J's $10-13$	6.10, 6.29, $6 \cdot 32,6 \cdot 35,6 \cdot 58,6 \cdot 61$
(42)	60	$2,4-\mathrm{H}, 3.02 \mathrm{br} ; 6-\mathrm{H}, 2.29$; $^{\mathrm{c}} \mathrm{ArMe}, 7.43,7 \cdot 68,7.72$; $\mathrm{CH}_{2}{ }^{\prime} \mathrm{CHE} 5.73 \mathrm{~m}$, $6 \cdot 94,{ }^{k} 7 \cdot 7 \mathrm{~m}$; ${ }^{\text {a }} \mathrm{J}^{\prime} \mathrm{s} 10-13$	$6 \cdot 13,6 \cdot 30,6 \cdot 33,6.33,6 \cdot 61,6 \cdot 61$

${ }^{a}$ Solvent $\mathrm{CF}_{3}, \mathrm{CO}_{2} \mathrm{H}$. ${ }^{b}$ Identical spectrum in $\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{D}$. ${ }^{6}$ Broad, indicating further coupling. ${ }^{d}$ Partly or largely obscured by other resonances. - Values obtained from spectrum of red adduct mixture. ${ }^{f}$ Apparent singlet. © Shows splitting of $c a$. 0.9 Hz . ${ }^{\boldsymbol{n}}$ Two sets of doublets; complete pattern integrates for two protons. The ABX system due to $10-\mathrm{H}, 11-\mathrm{H}_{\mathrm{A}}$, and $11-\mathrm{H}_{\mathrm{B}}$ was accurately simulated (worst agreement $\pm 0.4 \mathrm{~Hz}$) by our usual program, ${ }^{2}$ using the parameters given. ${ }^{3}$ These assignments could be reversed. ${ }^{k}$ Four lines.

Table 2

U.v. spectra

U.v. spectra		
Compd.	Solvent*	$\lambda_{\text {max. }} / \mathrm{nm}\left(10^{-4} \varepsilon\right)$
(12a)	M	228infl (1.60), $319 \mathrm{infl}(0.39), 363(0.98), 381$ $(1.31), 452 \mathrm{infl}(0.80), 477(0.99), 507(0.85)$, $541 \mathrm{infl}(0.42)$
	MA	247 (2.48), 263 (1.66), 329 (1.21), 358 (1.45)
(12b) ${ }^{\text {a }}$	M	$231(0.88)$, $284(0.42), 306 \mathrm{infl}(0.32), 323$ ($0 \cdot 25$), 349infl (0.42), $366(0.92), 382(1 \cdot 26)$, $426 \mathrm{infl}(0.42), 456 \mathrm{infl}(0.77), 480(0.99)$, $511(0.87), 546 \mathrm{inf}(0.40)$
	MA	$252 \mathrm{infl}(0 \cdot 65), 275$ ($1 \cdot 00$), 363 (0.89)
(13a	M	$\begin{aligned} & 266(0.94), 327 \mathrm{infl}(0.24), 366(0.42), 383 \\ & \quad(0.65), 448 \mathrm{infl}(0.58), 472(0.75), 501(0.69), \\ & 534(0.35) \end{aligned}$
	MA	$\begin{aligned} & 258(1.15), 275 \text { infl }(1 \cdot 00), \underset{(0.72)}{281}(1 \cdot 09), 288 \\ & (1 \cdot 10), 331 \operatorname{infl}(0.48), 368(0) \end{aligned}$
(14a)	M	$\begin{aligned} & 240(1.51), 261(1.49), 360 \mathrm{infl}(0.98), 384 \\ & (1.46), 45 \operatorname{linfl}(1.10), 475(1.53), 506(1.50), \\ & 540 \mathrm{infl}(0.81) \end{aligned}$
	MA	$\begin{aligned} & 260(1 \cdot 49), 286 \mathrm{infl}(1 \cdot 97), 292(2 \cdot 13), 339 \mathrm{infl} \\ & (0 \cdot 71), 372(1 \cdot 44) \end{aligned}$
(14b)	M	$\begin{aligned} & 240(1 \cdot 55), 285(0 \cdot 67), 318(0 \cdot 55), 332(0.61), \\ & 368(1 \cdot 34), 384(2 \cdot 12), 453 \text { infl }(1 \cdot 29), 479 \\ & (2 \cdot 02), 509(2 \cdot 14), 545(1 \cdot 11) \end{aligned}$
	MA	296 (2.49), 369infl (1.74), 375 (1.91)
(15)	M	$\begin{aligned} & 234(2 \cdot 24), 323(1 \cdot 00), 368(2 \cdot 30), 384(3 \cdot 09) \text {, } \\ & 502 \mathrm{br}(1 \cdot 57) \end{aligned}$
	MA	$280(2 \cdot 40), 367(2 \cdot 10)$
$(17)^{6}$	P	265 (1-93), 362 (1-64)
(19)	$\mathrm{M}^{\text {c }}$	245 (3.48), 343 (0.92)
(20)	$\mathrm{M}^{\text {c }}$	$\begin{aligned} & 247(3 \cdot 42), 278 \text { infl }(1 \cdot 53), 285 \text { infl }(1 \cdot 31), 356 \\ & (0 \cdot 96), 382(0 \cdot 54) \end{aligned}$
(24)	M ${ }^{\text {c }}$	$\begin{aligned} & 228(0.75) \\ & (0.62), 247(3 \cdot 48), 337(0.98), 352 \mathrm{infl} \\ & \end{aligned}$
(25)	M	271 (1-47), 282 (1.57)
	P	$240 \mathrm{infl}(0 \cdot 62), 271(0 \cdot 74), 288(0.92)$
(26)	M ${ }^{\text {d }}$	259 (0.89), 299 (0.18)

The cracking pattern of the mass spectrum of the quinoline (19) is very similar to both that of (20), if the presence of bromine atoms is allowed for, and that of the parent red adduct (12a) in the range below $m / e 425$ $(M-144)^{+}$. It thus appears that the red adducts readily eliminate dimethyl fumarate (or maleate) in the mass spectrometer and in the course of chemical reactions, and the losses may occur through concerted electrocyclic processes.

The introduction of a bromine atom to give compound (20) appears to be an independent substitution reaction, for which the course in Scheme 2 is suggested. The initial attack by bromonium ion is analogous to protonation; then nucleophilic attack by bromide ion at the 4-position of the quinoline nucleus occurs to give (21) which loses hydrogen bromide to give (22). The elimination of dimethyl fumarate via a reverse Diels-Alder reaction could then occur, but an alternative concerted loss of hydrogen bromide and the dimethyl fumarate could give the same product (23). Comparable reactions in the indole series, resulting in brominations in unexpected positions, have been described. ${ }^{7}$
The cyclopentadiene (19) with ethereal diazomethane gave a mixture of pyrazolines [e.g. (24)], the n.m.r.

spectrum of which showed six aromatic protons, thereby excluding the possibility of pyrazoline formation across the 3 - and 4 -positions of the quinoline ring. Two sets of doublets in the $\tau 4 \cdot 4-5 \cdot 4$ region (integral two protons) indicate that the substance, in spite of its sharp m.p., is a mixture of perhaps two of the possible pyrazolines; the substance gave an extremely weak molecular ion in its mass spectrum, the base peak corresponding to the

[^1]loss of a molecule of nitrogen. An analogous reaction sequence in the stilbazole series has been reported. ${ }^{8}$

Hydrogenation of the 'first' red adduct (12a) in methanol over 10% palladised charcoal, or in acetic acid over Adams catalyst, gave a decahydro-compound (26); hydrogenation in acetic acid over 5% palladised charcoal gave a colourless octahydro-compound (25) different

(24)

(25)
(26) 10a,10b-dihydro
(27) 4-Me-10a,10b-dihydro

from a yellow isomer, m.p. 148°, previously reported. ${ }^{2}$ The mass spectra of these isomers (25) were almost identical and their u.v. spectra were similar, but the compound described earlier did not possess a high field ester group or aromatic proton; the compounds are therefore probably geometrical isomers. The u.v. spectra of the decahydro-compounds (26) and (27) are similar to that of $N N$-diethylaniline; ${ }^{9}$ the u.v. spectrum of the octa-hydro-compound (25) shows less conjugation than those of ethyl β-anilinocrotonate ${ }^{10}$ and dimethyl N-methylanilinomaleate. ${ }^{11}$ The n.m.r. spectra of all the hydrogenated derivatives described here show high field ester methyl resonances, assigned as with the parent red adducts to the 6 -ester methyl groups; those of (25) and (26) show only four aromatic protons, one of which appears as a high field doublet. This doublet, which is absent from the spectrum of the decahydro-compound (27), is assigned to the 4-proton; the stereochemistry of the molecules seemingly permits greater shielding of this proton than in the parent adduct. The dominant loss in the mass spectra of these derivatives is that of an ester group, but all show fragment ions at $M-\mathbf{1 4 4}$.

2,4-Dimethylquinoline with dimethyl acetylenedicarboxylate in methanol gave a low yield of a deep red 1:4 molar adduct, which appeared from its spectra to possess structure (15).

Scheme 1 is put forward to account for the formation of the red adducts. It follows earlier ideas ${ }^{2,12}$ and there is ample opportunity for the formation of geometrical isomers. The easy formation of the red

[^2]adducts in methanol, which is a good proton donor, is noteworthy.

2,4,6,8-Tetramethylquinoline gave two more compounds on treatment with the ester. One of these is an isomer of (31) which shows markedly less conjugation than (31) itself; its spectra are compatible with structure (32) although transposition of the 2 - and 4 -substituents, as for (31) itself, is not excluded. The other compound is assigned structure (33); no analogues were obtained from any other 2 -methylquinoline. The u.v. spectrum was essentially that of a quinoline and was only slightly changed by acid. The n.m.r. spectrum showed all the features required of this structure, and the vinyl proton signal appeared at $\tau 4 \cdot 74$, corresponding to that of dimethyl methoxymaleate (4.85), and not the methoxyfumarate (3.90). ${ }^{13}$ Hydrogenation of compound (33) over palladium-charcoal gave the succinate (34), identified from its n.m.r. spectrum and the virtual identity of its u.v. spectrum with that of (33). Hydrogenation over Adams catalyst gave the phenol (35), the u.v. spectrum of which showed a bathochromic shift in alkaline solution; on another occasion the reduced phenol (36) was also formed. The phenol (35) gave no colouration with iron(III) chloride, excluding structures of the methyl salicylate type. No phenolic hydroxyabsorption was detected in its i.r. or n.m.r. spectra,

although a search was made down to $\tau-30$. This is consistent with the presence of a strong hydrogen bond, associated possibly with line broadening in the n.m.r.

[^3]spectrum due to the nitrogen atom. The n.m.r. spectrum of the second reduction product (36) showed clearly that the carbocyclic ring of the quinoline ring has been reduced. The phenolic proton could still not be detected but reaction with diazomethane gave the expected ether (37).

On one occasion only, the phenol (38) was isolated from the reaction of the acetylenic ester with 2,8 dimethylquinoline in tetrahydrofuran. Its n.m.r. spectrum, and that of the ether (39) formed with diazomethane, showed low field doublets characteristic of the 4 -hydrogen atom of the quinoline system. Phenols of this type, and of type (33), can be formed as outlined in

Scheme 3
Scheme 3, which has resemblances to other schemes used to account for the formation of benzene derivatives from acetylenic esters and other carbanions. ${ }^{\mathbf{1 4 , 1 5}}$

The configuration shown for the vinyl proton of the ether (33) is expected in terms of this scheme, as the migration of the ring hydrogen atom to the carbanion can take place through a six-membered transition state leading to the observed cis arrangement of the ester groups.

Minor products from 2,8-dimethyl-, 2,6,8-trimethyl-, and $2,4,6,8$-tetramethyl-quinoline and the acetylenic ester in acetonitrile are assigned structures (40)-(42) from the available spectral evidence. The n.m.r. spectra (Table 1) of compounds (40) and (41) show one-proton doublets at $\tau c a .2 \cdot 1$ and $3 \cdot 1$, and (42) possesses a singlet at $\tau 2 \cdot 3$ showing that the 6 -proton is strongly deshielded. This deshielding is consistent with the presence of a peri-ester group, as in the azepines (6)-(11). The aliphatic three-spin system for (40) has been accurately simulated and closely resembles that ${ }^{2}$ for the ethyl ester analogue of (6) except for small differences in chemical shifts. The u.v. spectra show less conjugation than azepines such as (6), and in contrast do not appear to be protonated in methanol-perchloric acid. The most interesting feature of the mass spectra is the loss of a
14 R. M. Acheson and W. R. Tully, J. Chem. Soc. (C), 1968, 1623.
fragment of mass 355 from the molecular ion to give a very large peak, or the base peak. This fragment corresponds to the pentakismethoxycarbonylcyclopentadienyl radical (43), and could be formed as indicated. Cyclobutenecarboxylic esters have been obtained from enamines with dimethyl acetylenedicarboxylate., ${ }^{1,16}$

EXPERIMENTAL

The instruments and general procedures employed have been described. ${ }^{1,3}$ Peaks $\leqslant 10 \%$ of the base peaks in the mass spectra are usually omitted, but full details are available. ${ }^{4}$ Alumina (deactivated) chromatographic columns were prepared in benzene and eluted with benzene, benzene-chloroform mixtures, and finally chloroform, unless stated otherwise. Columns prepared in light petroleum (b.p. 60-80 $)$ were eluted first with this solvent, containing increasing proportions of benzene, and then with pure benzene gradually changing to chloroform. The products from columns are described in their order of elution. The acetic acid used was glacial.

2-Methylquinoline with Dimethyl Acetylenedicarboxylate in Methanol.-The quinoline (20 ml) in dry methanol (20 ml) was added to the ester (52 ml) in dry methanol $(230 \mathrm{ml})$ at 0°. The solution darkened rapidly and began to deposit crystals after 1 h . After 24 h at 0° and 48 h at room temperature the solid was collected, washed with methanol, and dissolved in chloroform (100 ml) by heating; the solution was chromatographed on alumina (1300 ml). Unchanged acetylene, dimethyl fumarate, a deep red tar, and a blue compound were successively obtained.

The red tar crystallised on trituration with methanol; recrystallisation from methanol-acetonitrile gave the ' first' red adduct (hexamethyl 6,7,7a,8-tetrahydrobenzo[f]cyclo-penta[a]quinolizine-6,7,7a,8,9,10-hexacarboxylate) (12a) as red prisms (2.0 g), m.p. 241° (lit., ${ }^{236}{ }^{\circ}$) (Found: C, 59.3 ; $\mathrm{H}, 4 \cdot 9 ; \mathrm{N}, 2 \cdot 6$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{12}: \mathrm{C}, 59 \cdot 1 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}$, $2.5 \%), v_{\text {max }} 1749,1731,1702,1618,1550$, and 1535.

Chromatography of the combined filtrate and methanol washings from the original reaction gave a mixture of the 'first' (12a) and 'second' (12b) red adducts, the ratio (ca. 3:1 from n.m.r.) of which could not be appreciably altered by repeated crystallisation, and further blue adduct.
Reactions of the 'First' Red Adduct (12a).-(i) Bromine $(0.8 \mathrm{ml})$ in acetic acid (5 ml) was added to the adduct (12a) $(2.0 \mathrm{~g})$ in boiling acetic acid, the mixture was refluxed for 5 min , and the solvent was removed in vacuo. The remaining acetic acid was removed by adding benzene and evaporating to dryness, several times, and the residue in chloroform was chromatographed on alumina (200 ml). A faint yellow band yielded a compound (5 mg), fine rods (from methanol), m.p. 208-211 ${ }^{\circ}$, the mother liquors from which gave dimethyl fumarate (6 mg).

A pale yellow band gave tetramethyl 5-(4-bromo-2-quinolyl)cyclopenta-2,4-diene-1,2,3,4-tetracarboxylate (20), yellow rods (0.50 g) (from methanol), m.p. 186- 188° (Found: $\mathrm{C}, 52 \cdot 2 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{Br}, 15 \cdot 5 ; \mathrm{N}, 2 \cdot 8 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrNO}_{8}$ requires $\mathrm{C}, 52 \cdot 4 ; \mathrm{H}, 3.6 ; \mathrm{Br}, 15 \cdot 8 ; \mathrm{N}, 2.8 \%$), $\nu_{\text {max. }} 1747$, $1730,1648 \mathrm{w}, 161 \mathrm{w}, 1550 \mathrm{w}$, and $1510 \mathrm{~cm}^{-1}$.
A red band gave unchanged (12a) ($0 \cdot 1 \mathrm{~g}$).
The recovered red adduct from the bromination of the

[^4]Table 3
Mass spectra
Compd.
$m i e(\%)$ (peaks $\leqslant 10 \%$ usually not recorded) 569 ($M^{+}, 4$), 510 (3), 425 (100), 366 (16), 334 (12), 114 (5), 113 (30), $85(16), 59(26), m^{*} 457(569 \longrightarrow$ 510), $315 \cdot 5(425 \longrightarrow 366), 304 \cdot 5(355 \longrightarrow 34)$
(13a) $583\left(M^{+}, 7 \cdot 5\right), 568(21), 524(7), 439$ (100), 380 (15), 348 (65), 320 (24), 316 (22.5), 288 (12), 202 (14), 114 (17.5), 113 (100), 85 (25), 59 (15), (other peaks $<6 \%), m^{*} 483(568 \longrightarrow$ 380), 319 ($380 \longrightarrow 348$)
(14a) $\quad 597\left(M^{+}, 2\right), 582(9), 538(6), 453$ (100), 394 (19), 362 (71), 334 (21), 330 (23), 302 (11), 272 (21), 218 (17), 217 (24), 216 (45), 215 (19), 202 (21), 113 (42), 85 (40), 59 (39), $m^{*} 497(582 \longrightarrow 538), 342(453 \longrightarrow$ 394)
$597\left(M^{+}, 7\right), 582$ (18), 566 (4), 538 (11), 453 (100), 422 (6), 394 (9), 362 (40), 330 (11), 113 (32), 85 (3), 59
 $725\left(M^{+}, 4\right), 694$ (5), 693 (4), 666 (5), 634 (4), 606 (6), 581 (79), 439 (19), 113 (100), $85(63), 59(39), m^{*}$
 ($634 \longrightarrow 606$)
$\left.425{ }^{2} M^{+}, 100\right), 366(15), 334(10), m^{*} 315 \cdot 5(425 \longrightarrow$ $366), 304 \cdot 8(366 \longrightarrow 334)$
$505\left(M^{+}, 100\right), 503\left(M^{+}, 100\right), 446(18), 444$ (16), 414 (11), 412 (10), 254 (10), $m^{*} 343 \mathrm{br}(505 \longrightarrow 446,503$
$\xrightarrow[467\left(M^{+}, 0 \cdot 2\right), 439(100), 407(9), 380(29), 375(6), 364]{ } 444), 303 \mathrm{br}$ (19), 348 (39), 320 (11), 310 (15), 204 (24), 203 (11), 128 (11), 59 (26), $m^{*} 377 \cdot 5$ (439 $\longrightarrow 407$), $345 \cdot 4 \xrightarrow{3450} \longrightarrow 375)$, $329(439 \longrightarrow 380), 319$
573 ($M^{+}, 35$), 542 (1), 541 (1), 514 (35), 482 (9), 454 (13), 429 (28), 422 (19), $397(25), 369$ (93), 338 (67), 337 (99), 284 (28), 278 (25), 252 (18), 193 (11), 113 (58), 85 (12), $59(100), m^{*} 461(573 \longrightarrow 514)$, $511 \mathrm{br}(573 \longrightarrow 542,541), 452(514 \longrightarrow 482)$, $\left.\left.{ }_{392}(454 \longrightarrow 369) 422\right), 367{ }^{(429} \longrightarrow 397\right), ~ 343 \cdot 0$ $\left.{ }_{(337 \longrightarrow 369)}{ }^{3} \longrightarrow 278\right) \quad 308 \quad(369 \longrightarrow 337), \quad 229$ $\left(337 \longrightarrow 278\left(M^{+}, 56\right), 544(4), 516\right.$ (49), 484 (13), 431 (11), $302(26), 286(100), 280(20), 278$ (12), 254 (63), 242 (16), 196 (12), 168 (11), 131 (20), 130 (18), 113 (18), 105 (23), 85 (5), 59 (27), 55 (21), $m^{*} 514$
 $\underset{(286 \longrightarrow 254)}{ }{ }^{48}$
$579\left(M^{+}, 69\right), 564(100), 549(28), 548(89), 547(77)$, $520(90), 461(20), 460(25)$, (other peaks $<20 \%$), $m^{*} 467(579 \longrightarrow 520)$
581 ($M^{+}, 66$), 550 (25), 522 (100), 490 (27), 446 (26), 438 (21), 437 (78), 406 (68), 405 (43), 404 (22), 389 (20), 376 (14), 346 (20), 259 (12), 232 (12), 231 (11), 113 (62), 105 (12), 91 (19), 85 (36), 77 (17), 59 (47), 55 (28), $\left.\underset{(581 \longrightarrow}{m^{*}} 469(581 \longrightarrow 437)-522\right), 460(522 \longrightarrow 490), 329$ $37\left(M^{+}, 100\right), 406(29), 405(27), 378$ (2), $m^{*} 375 \cdot 5$ ($437 \longrightarrow 405$), 327 ($437 \longrightarrow 378$)
$583\left(M^{+}, 30.5\right), 552(11 \cdot 5), 524(100), 492$ (21.5), 460 (16.5), 374 (13), 228 (81), 215 (17.5); $m^{*} 498$

$597\left(M^{+}, 16\right), 566$ (6), 538 (40), 506 (9), 474 (7), 242 (100), 229 (14), 59 (8), $m^{*} 511(566 \longrightarrow 538)$,
 (597 $\longrightarrow 242$)
$611\left(M^{+}, 12\right), 552(39), 520(5), 402$ (7), 256 (100), 243 (30), $m^{*} 498.6(611 \longrightarrow$

3 : I mixture (5 g) of (12a) and (12b) proved, from n.m.r., to be mainly the 'second' red adduct, red needles (0.15 g) (from methanol), m.p. 230°.

The bromoquinoline (20) (0.4 g) in methanol (100 ml) was shaken under hydrogen (2 atm) for 5 h with 10% palladiumcharcoal. Filtration and evaporation gave tetramethyl 5-(2-quinolyl) cyclopenta-2,4-diene-1,2,3,4-tetracarboxylate (19), yellow rods (0.18 g) (from methanol), m.p. $138-140^{\circ}$ (Found: $\mathrm{C}, 62 \cdot 1 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 3 \cdot \mathrm{l} . \quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{8}$ requires C , $62.1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 3.3 \%), \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1721,1638 \mathrm{w}, 1611 \mathrm{w}$, 1559 w and $1508 \mathrm{~cm}^{-1}$. The quinolines (19) and (20) did not react with methyl iodide in refluxing acetonitrile.
(ii) Zinc dust was added in portions to the 'first' red adduct (12 a) $(1.9 \mathrm{~g})$ in acetic acid (50 ml), and the mixture was stirred for 1 h and filtered. The filtrate was diluted with water (100 ml) and extracted with chloroform; the extracts were washed, dried, and evaporated. Acetic acid was removed from the residue by repeated extraction with benzene, and the involatile material in benzene was chromatographed on alumina (120 ml). A pale yellow band gave a solid (160 mg), recrystallised from methanol to give a mixture of yellow and colourless crystals. Some of the yellow crystals were picked out, and used to seed a solution of the mixture in methanol. The quinoline (19) (30 mg), m.p. $134-136^{\circ}$, identical (n.m.r., i.r., u.v., and mass spectra) with the analysed sample, was thus obtained.
Reduction of (12a) with sodium amalgam and methanol gave tar.
(iii) The adduct (12 a) (0.5 g) in acetic acid (100 ml) was hydrogenated (5 atm) for 9 h over 5% palladium-charcoal $(0.3 \mathrm{~g})$. Filtration, evaporation, and repeated evaporation with methanol gave an oil which yielded hexamethyl $6,7,7 \mathrm{a}, 8,9,10,11,12$-octahydrobenzo[f]cyclopenta[a]quinolizine6,7,7a, 8,9,10-hexacarboxylate (25) (60 mg) as plates (from methanol), m.p. $60-63^{\circ}$ (Found: C, 58.7 ; H, 5.6 ; N, $2 \cdot 3$. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{12}$ requires $\mathrm{C}, 58.6 ; \mathrm{H}, 5.5 ; \mathrm{N}, 2.4 \%$), $\nu_{\text {max. }}$. $\left(\mathrm{CHCl}_{3}\right) 1731 \mathrm{br}$ and $1602 \mathrm{w} \mathrm{cm}^{-1}$.
(iv) The adduct (12a) (0.5 g) was hydrogenated as in (iii) but over Adams catalyst (0.25 g) for 24 h , and gave the decahydro-compound (26) ($0 \cdot 12 \mathrm{~g}$), as thick rods (from methanol-acetonitrile), m.p. 196-198 (Found: C, 58.6; $\mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 2 \cdot 5 . \quad \mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{12}$ requires $\mathrm{C}, 58.4 ; \mathrm{H}, 5.8 ; \mathrm{N}$, $2 \cdot 4 \%), v_{\text {max. }} 1730 \mathrm{br}, 1606$, and $1580 \mathrm{~cm}^{-1}$.

2,8-Dimethylquinoline with Dimethyl Acetylenedicarboxyl-ate.-(i) The quinoline (20 g) in acetonitrile (50 ml) was added to the ester (46 ml) in acetonitrile (150 ml). The mixture was refluxed for 3 h and the acetonitrile was evaporated off. After 3 months the residual oil in benzene was chromatographed on alumina $(1500 \mathrm{ml})$. The products were unchanged ester, a yellow band yielding tetramethyl 4a,10-dimethyl-4aH-benzo[c]quinolizine-1,2,3,4-tetracarb-
oxylate (2) (1.0 g), yellow rods (from methanol), m.p. 98 100° (Found: C, $62 \cdot 2 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 3 \cdot 1 . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires $\mathrm{C}, 62 \cdot 6 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 3.2 \%$), $\nu_{\text {max. }}$ 1751, 1745, 1718, 1641, 1631, 1580 , and $1552 \mathrm{~cm}^{-1}, \frac{\max }{}$ orange band yielding tetramethyl 10,11-dihydro-1-methylazepino [1,2-a]quinoline-$7,8,9,10$-tetracarboxylate (7) as yellow-orange rods (0.61 g) (from methanol), m.p. 158-159.5 (Found: C, 63.0 ; H, $5 \cdot 3 ; \mathrm{N}, 3 \cdot 2 . \quad \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires $\mathrm{C}, 62 \cdot 6 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}$, $3 \cdot 2 \%), \nu_{\text {max. }} 1760,1743,1730,1679,1634,1606 \mathrm{w}$, and 1567 cm^{-1}, and a red band yielding a mixture (1.0 g) of the 'first' (13a) and 'second' (13b) red adducts in ca. 3:1 ratio (unchanged after repeated recrystallisation).

The column was run dry and extruded, and a dark blue band was extracted with chloroform-acetone to give a
blue adduct, deep blue prisms (0.29 g) (from methanol), m.p. 272-274 ${ }^{\circ}$ (turning green) (Found: C, $59 \cdot 2$; H, $4 \cdot 8$; $\mathrm{N}, 2 \cdot 1$. Calc. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{15}$: C, $58.9 ; \mathrm{H}, 4 \cdot 5 ; \mathrm{N}, 2 \cdot 0$. Calc. for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{NO}_{15}$: C, $59 \cdot 4 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 2 \cdot 0 \%$).
(ii) On another occasion chromatographing the product from 8.0 g of the quinoline on alumina (400 ml) prepared in petroleum gave: dimethyl 2-(8-methyl-2-quinolylmethylene)succinate (29), needles ($1 \cdot 4 \mathrm{~g}$) (from methanol), m.p. 107$107 \cdot 5^{\circ}$ (Found: C, $67 \cdot 8 ; \mathrm{H}, 5 \cdot 7 . \quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires C , $68.2 ; \mathrm{H}, 5.7 \%), \nu_{\max } 1738$ and $1700 \mathrm{~cm}^{-1}$; and the quinolizine (2) (0.5 g). The remaining fractions were combined and rechromatographed on alumina (70 ml) made up in benzene. A pale red band gave a yellow 1:3 molar adduct (hexamethyl 7a,9a,10,11-tetrahydro-1-methylcyclobut[4,5]aze-pino[1,2-a $] q u i n o l i n e-7,7 \mathrm{a}, 8,9,9 \mathrm{a}, 10$-hexacarboxylate) (40), yellow prisms, m.p. 186-189 (Found: C, 60.0 ; H, 5.0 ; $\mathrm{N}, 2 \cdot 5 . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{12}$ requires C, $59 \cdot 7 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 2 \cdot 4 \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1741,1614 \mathrm{w}, 1573 \mathrm{w}, 1565 \mathrm{w}$, and $1546 \mathrm{w} \mathrm{cm}^{-1}$, and a subsequent dark band gave a thick tar, which yielded $\quad 2$-(6-hydroxy-2,3,4-trismethoxycarbonylphenyl)-8methylquinoline (38), yellow needles ($0 \cdot 15 \mathrm{~g}$) (from methanol), m.p. 173-175 (Found: C, 64.3; H, 4.9; N, 3.6; OMe, $22 \cdot 6 . \quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{7}$ requires $\mathrm{C}, 64 \cdot 5 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 3 \cdot 4 ; 3 \mathrm{OMe}$, 22.8%), $\nu_{\text {max. }} 1731,1720,1615 \mathrm{w}, 1597,1590$, and 1554 w cm^{-1}. The corresponding methyl ester (39), obtained with ethereal diazomethane, needles (70% yield) (from methanol), had m.p. 168-171 ${ }^{\circ}$ (Found: C, 65.3; H, 5.1; N, 3.4. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{7}$ requires C, $65 \cdot 2 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 3 \cdot 3 \%$), $\nu_{\text {max. }}$ 1747, $1733,1724,1612 \mathrm{w}, 1600,1590$, and $1502 \mathrm{~cm}^{-1}$.
(iii) The ester (19 g) and the quinoline (8.0 g) in dry ${ }^{17}$ tetrahydrofuran (170 ml) were refluxed for 6 days; the solvent was then removed and the residue in chloroform was chromatographed on alumina (400 ml) prepared in petroleum. The 'first' red adduct (13a) $(0.25 \mathrm{~g})$, the phenol (38) (0.19 g), and the propene (29) (0.4 g) were obtained.
(iv) (With J. M. F. Gagan ${ }^{18}$). The ester (20 ml), the quinoline (10 g), and benzene (200 ml) were refluxed for 3 h , the solvent was removed, and the residue after 6 weeks was chromatographed on alumina to give the 'first' red adduct $(4.2 \mathrm{~g})$, and the blue adduct $(0.3 \mathrm{~g})$.
(v) The quinoline (19.2 g) and the ester (46 ml) in methanol (250 ml) were refluxed for 24 h . After 14 weeks the precipitate was collected and gave the 'first' red adduct (13a) as prisms (5.5 g) (from methanol-acetonitrile), m.p. 237-238 ${ }^{\circ}$ (Found: C, 59.9 ; H, 5•1; N, 2.3. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{12}$ requires $\mathrm{C}, 59.7$; H, 5.0 ; N, 2.4%), $\nu_{\text {max. }}$ 1751, 1741, 1699, and $1632 \mathrm{~cm}^{-1}$. The original filtrate contained (13a), (13b), and the blue adduct, according to t.l.c.

Reaction of the Quinoline (19) with Diazomethane.-The quinoline (19) (100 mg) in ether (100 ml) was treated with ethereal diazomethane, and after 10 h acetic acid was added to decompose unchanged diazomethane. Excess of acetic acid was removed by repeated addition and evaporation of methanol, the solution was filtered, and the residue gave tetramethyl 3,3a,4,6a-tetrahydro-5-(2-quinolyl)cyclopenta-pyrazole-3a,4,6,6a-tetracarboxylate (24) as pale yellow hexagonal plates (42 mg) (from methanol), m.p. $140-141^{\circ}$ (decomp.) (Found: C, 59.1; H, 4.5; N, 8.7. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires $\mathrm{C}, 59 \cdot 1 ; \mathrm{H}, 4 \cdot 5 ; \mathrm{N}, 9 \cdot 0 \%), \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1720 \mathrm{br}$, $1608 \mathrm{w}, 1558,1547$, and $1504 \mathrm{~cm}^{-1}$.

The pyrazoline was heated at 150° in an oil-bath for 5 min ; no more nitrogen was then evolved. The resulting melt was triturated with methanol, and the methanol was evaporated off, giving an oil, presumably the cyclopropane,
which solidified. The mass spectrum was almost identical with that of the pyrazoline.

2,6,8-Trimethylquinoline with Dimethyl Acetylenedicarboxylate in Acetonitrile.-2,6,8-Trimethylquinoline (10 g) in acetonitrile (30 ml) was added to the ester (22 ml) in acetonitrile (120 ml). The mixture was refluxed for 6 days and left for 7 weeks at room temperature. The acetonitrile was evaporated off and the tarry residue in benzenechloroform was chromatographed on alumina (700 ml) prepared in petroleum. A pale yellow band yielded dimethyl 2-(6,8-dimethyl-2-quinolylmethylene)succinate (30), plates (0.96 g) (from methanol), m.p. 107-108 (Found: C, $69.0 ; \mathrm{H}, 6.3 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\mathrm{C}, 69.0 ; \mathrm{H}, 6 \cdot 1 \%$), $\nu_{\max } 1737,1710 \mathrm{br}, 1642 \mathrm{w}$, and $1618 \mathrm{w} \mathrm{cm}{ }^{-1}$. The deep yellow band gave the 1:3 molar yellow adduct (41), parallelepipeds (100 mg) (from methanol-acetonitrile), m.p. 199.5-201 ${ }^{\circ}$ (Found: C, 60.9; H, 5.4; N, 2.3. $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{12}$ requires $\mathrm{C}, 60 \cdot 3 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 2 \cdot 3 \%$), $\nu_{\text {max. }} 1736 \mathrm{br}, 1713$, $1634 \mathrm{w}, 1600,1567$, and $1559 \mathrm{~cm}^{-1}$. A red band gave the 'first' red adduct (14a) obtained as deep crimson rods $(0.78 \mathrm{~g})$ (from methanol-acetonitrile), m.p. 224° (Found: $\mathrm{C}, 60 \cdot 1 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 2 \cdot 5 . \quad \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{12}$ requires $\mathrm{C}, 60 \cdot 3 ; \mathrm{H}$, $5 \cdot 2$; $\mathrm{N}, 2 \cdot 3 \%$), $\nu_{\max .} 1749,1740,1688,1622,1609,1573 \mathrm{w}$, and $1523 \mathrm{~cm}^{-1}$. The mother liquor yielded more ($0 \cdot 16 \mathrm{~g}$) of (41).

A thick, deep red band yielded the 'second' red adduct (14b), obtained as bright red needles (80 mg) (from methanol-acetonitrile), m.p. 252-252.5 (Found: C, $60 \cdot 2$; $\mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 2 \cdot 3 . \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{12}$ requires C, $60 \cdot 3 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}$, $2 \cdot 3 \%), \nu_{\max } 1743,1739,1692,1630$, and $1521 \mathrm{~cm}^{-1}$. A blue band yielded the dark blue adduct (30 mg), tiny rods, m.p. 272-276 ${ }^{\circ}$ (Found: C, 59.7 ; H, $4 \cdot 7$; N, $2 \cdot 1$. Calc. for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{NO}_{15}$: C, $59.4 ; \mathrm{H}, 4.7$; $\mathrm{N}, 2.0$. Calc. for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}_{15}$: C, $59 \cdot 9 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{N}, \mathrm{I} \cdot 9 \%$).

2,4-Dimethylquinoline with Dimethyl Acetylenedicarboxylate in Methanol.-2,4-Dimethylquinoline (8.2 ml) in methanol $(20 \mathrm{ml})$ was added slowly to the ester (19 ml) in methanol $(150 \mathrm{ml})$, and the mixture was kept at 0° for 24 h . After 3 months at room temperature, the precipitated tar was washed with methanol, dissolved in benzene-chloroform, and chromatographed on alumina (570 ml prepared in benzene). A pale yellow band yielded dimethyl fumarate $(100 \mathrm{mg})$. A deep red band gave a tar which yielded the red adduct (15) (90 mg), deep red matted rods (from methanol, m.p. $143-147^{\circ}$ (Found: C, $58.1 ;$ H, $5 \cdot 0 ; \mathrm{N}$, $2.0 . \mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{16}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, \mathrm{l} .9 \%$), $\nu_{\text {max }} 1729 \mathrm{br}, 1610 \mathrm{w}, 1540$, and $1518 \mathrm{~cm}^{-1}$.

2,4,6,8-Tetramethylquinoline with Dimethyl Acetylenedicarb-oxylate.-2,4,6,8-Tetramethylquinoline (71 g), the ester $(126 \mathrm{ml})$, and acetonitrile (600 ml) were refluxed for 1 week. After a further week at room temperature the acetonitrile was evaporated off, and the tarry residue largely solidified over the next 2 months. The solid was triturated and washed with methanol, and the washings and filtrate were combined and evaporated; the residue (A) was retained.

The solid mixture of thick, brown crystals and fine, yellow ones was readily separated, since the yellow, but not the brown crystals, adhered to the damp filter paper. The yellow crystals gave the adduct (42), thick prisms ($2 \cdot 4 \mathrm{~g}$) (from methanol-acetonitrile), m.p. 216-216.5 ${ }^{\circ}$ (Found: C, $61 \cdot 3 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 2 \cdot 3 . \quad \mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{12}$ requires $\mathrm{C}, 60 \cdot 9 ; \mathrm{H}, 5 \cdot 4$; $\mathrm{N}, 2 \cdot 3 \%$), $\nu_{\text {max. }} 1744,1731,1713,1603$, and $1568 \mathrm{~cm}^{-1}$.

[^5]The brown crystals on recrystallisation from acetonitrile gave dimethyl 2-(4,6,8-trimethyl-2-quinolylmethylene) succinate (31), pale brown needles (13.8 g) (from acetonitrile), m.p. $136.5-137.5^{\circ}$ (Found: C, $69 \cdot 8 ; \mathrm{H}, 6 \cdot 5 ; \mathrm{N}, 4 \cdot 3 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\mathrm{C}, 69.7$; $\mathrm{H}, 6.5$; $\mathrm{N}, 4 \cdot 3 \%$), $\nu_{\text {max. }} 1740,1712,1640$, 1620 , and $1597 \mathrm{~cm}^{-1}$.

The residue (A) in benzene-chloroform was chromatographed on alumina (3600 ml). A yellow band yielded the quinoline (33) as flocculent, fine white rods $(2 \cdot 7 \mathrm{~g})$ (from methanol-acetonitrile), m.p. 194.5-196.5 (Found: C, $62 \cdot 4 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 2.6 . \quad \mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{11}$ requires $\mathrm{C}, 62 \cdot 2 ; \mathrm{H}$, $5 \cdot 0 ; \mathrm{N}, 2.4 \%), \nu_{\text {max. }} 1741,1722,1645$, and $1597 \mathrm{w} \mathrm{cm}^{-1}$. A deep orange band yielded a mixture which on fractional crystallisation from methanol-acetonitrile gave compound (42) $(1 \cdot 3 \mathrm{~g})$ and then a further crop of the white adduct (33) ($3 \cdot 0 \mathrm{~g}$).

The mother liquors from the foregoing crystallisations were combined and evaporated, and the resulting tar in benzene was chromatographed on alumina (4l) prepared in 1:1 petroleum (b.p. $40-60^{\circ}$)-benzene. The first eluate contained $2,4,6,8$-tetramethylquinoline $(4 \cdot 5 \mathrm{~g})$. A pale yellow band yielded compound (31) (0.9 g), m.p. $136-137^{\circ}$. The mother liquor was evaporated and the residue after two recrystallisations from hexane gave the $1: 1$ adduct (32) (140 mg) as white needles, m.p. $100-101^{\circ}$ (Found: C, $69 \cdot 9$; H, 6.2; $\mathrm{N}, 4.4 . \quad \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\mathrm{C}, 69.7 ; \mathrm{H}, 6.5 ; \mathrm{N}$, 4.3%), $\nu_{\text {max }} 1717,1631 \mathrm{w}, 1619 \mathrm{w}, 1595 \mathrm{w}, 1567 \mathrm{w}$, and 1561 w cm^{-1}.

A yellow band yielded more compound (31) (0.85 g). A deep yellow band gave tetramethyl 4a,6,8,10-tetramethyl-4aH-benzo[c]quinolizine-1,2,3,4-tetracarboxylate (3), pale yellow prisms (17 g) (from methanol), m.p. $151-153^{\circ}$ (Found: C, $64 \cdot 0 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 3 \cdot 1 . \quad \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{8}$ requires $\mathrm{C}, 64 \cdot 0 ; \mathrm{H}, 5 \cdot 8$; $\mathrm{N}, 3 \cdot 0 \%$), $\nu_{\text {max. }} 1740,1709,1623,1601 \mathrm{w}$, and $1539 \mathrm{~cm}^{-1}$. A deep red band gave compound (42) (70 mg).

Compounds (31), (32), and (33) did not form methiodides with methyl iodide in boiling acetonitrile.

Reduction of the Ether (33).-(i) The ether (33) (0.5 g) in glacial acetic acid (150 ml) was shaken under hydrogen (5 atm) with 10% palladium-charcoal $(0.3 \mathrm{~g})$ for 48 h . After filtration and evaporation, residual acetic acid was removed by repeated addition and evaporation of methanol. The residue gave the quinoline (34) as brilliant white needles $(0.34 \mathrm{~g})$ [from methanol-acetonitrile (charcoal)], m.p. 160—162 (Found: C, 61.8; H, 5.4; N, 2.4. $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{11}$ requires $\mathrm{C}, 62 \cdot 0 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 2 \cdot 4 \%$), $\nu_{\text {max. }} 1752,1737,1721$, $1615 \mathrm{w}, 1590,1574 \mathrm{w}$, and $1558 \mathrm{w} \mathrm{cm}{ }^{-1}$.
(ii) The ether (33) (0.3 g) was hydrogenated as in (i) but with Adams catalyst $(0.15 \mathrm{~g})$ for 24 h . The product was the phenol (35), pale yellow rods (50 mg) (from methanol), m.p.

152-156 ${ }^{\circ}$ (Found: C, $66 \cdot 1 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 3 \cdot 3 . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{7}$ requires $\mathrm{C}, 65 \cdot 9 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 3 \cdot 2 \%)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1730$, $1600 \mathrm{w}, 1583 \mathrm{w}, 1554 \mathrm{w}$, and $1540 \mathrm{w} \mathrm{cm}^{-1}$.
(iii) Repetition of experiment (ii) with a newly-opened batch of Adams catalyst gave the phenol (36), brown rods (70 mg) (from methanol), m.p. $156-160^{\circ}, v_{\max } 1738,1721$, and $1581 \mathrm{~cm}^{-1}$. With ethereal diazomethane the methoxycompound (37) (24 mg) was obtained as prisms (from methanol), m.p. $141-142^{\circ}$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1736,1728$, and $1590 \mathrm{br} \mathrm{cm}^{-1}$.

2,6-Dimethylquinoline with Dimethyl Acetylenedicarboxylate (with J. A. L. B. Caterer).-The quinoline (10 g) was added slowly to a stirred solution of the ester (20 ml) in acetonitrile (50 ml) at 0°, and after 4 days at room temperature the solvent was removed in vacuo and the residue chromatographed. The products were tetramethyl $4 \mathrm{a}, 8$ -dimethyl-4aH-benzo[c]quinolizine-1,2,3,4-tetracarboxylate (4), yellow needles (2.6 g) (from methanol), m.p. 149° (Found: $\mathrm{C}, 62 \cdot 5 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 3 \cdot 4 . \quad \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires $\mathrm{C}, 62 \cdot 6 ; \mathrm{H}$, $5 \cdot 3 ; \mathrm{N}, 3.2 \%$), $\nu_{\text {max. }} 1740,1618$, and $1538 \mathrm{~cm}^{-1}$; tetramethyl 10,11-dihydro-3-methylazepino[1,2-a]quinoline-7,8,9,10-tetracarboxylate (9), orange crystals (1.3 g) (from acetonitrile), m.p. $260 \cdot 5^{\circ}$ (Found: C, $62 \cdot 5 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 3 \cdot 1 . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires C, $62 \cdot 6 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 3 \cdot 2 \%$), $v_{\text {max. }}$ 1757, 1742, 1669 , 1613, and $1553 \mathrm{~cm}^{-1}$, and traces of dark red and blue adducts.
A similar experiment with diethyl acetylenedicarboxylate gave as sole crystalline product tetraethyl 10,11-dihydro-3-methylazepino[1,2-a]quinoline-7,8,9,10-tetracarboxylate (10), orange crystals (1.0 g) (from acetonitrile), m.p. $145 \cdot 5^{\circ}$ (Found: C, $65 \cdot 4 ; \mathrm{H}, 6.0 ; \mathrm{N}, 3 \cdot 2 . \quad \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{8}$ requires C , $65 \cdot 2 ; \mathrm{H}, 6.3$; N, 2.8%).

2,4,6-Trimethylquinoline with Dimethyl Acetylenedicarboxylate (with J. A. L. B. Caterer).-The quinoline (10 g) was treated as in the previous experiment and gave tetramethyl 4a,6,8-trimethyl-4aH-benzo[c] quinolizine-1,2,3,4-tetracarboxylate (5), yellow prisms ($2 \cdot 7 \mathrm{~g}$) (from methanol), m.p. 154-155 (Found: C, 63.7 ; H, 5.6; N, 3.2. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{8}$ requires C, $63.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3 \cdot 1 \%$) and tetramethyl $10,11-$ dihydro-3,5-dimethylazepino[1,2-a]quinoline-7,8,9,10-tetracarboxylate (11), orange crystals (from acetonitrile), m.p. $277-278^{\circ}$ (Found: C, 63.7; H, 5.5; N, 3.4. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{8}$ requires $\mathrm{C}, 63.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3 \cdot 1 \%$). No blue or red compounds were detected.

We thank the S.R.C. for a Studentship (to D. F. N.), Mrs. E. E. Richards for the 100 MHz n.m.r. spectra, and Mr. N. M. Sinclair for the mass spectra.
[2/2180 Received, 18th September, 1972]

[^0]: ${ }^{3}$ R. M. Acheson and D. F. Nisbet, J. Chem. Soc. (C), 1971, 3291.
 ${ }^{4}$ D. F. Nisbet, D.Phil. Thesis, Oxford University, 1971, Science Catalogue No. M.S. D.Phil., d. 5307. Photocopies may be obtained without reference to the author on payment of the library's standard fees for this work.

[^1]: 7 W. I. Taylor, Proc. Chem. Soc., 1962, 247.

[^2]: ${ }^{8}$ R. M. Acheson and R. S. Feinberg, J. Chem. Soc. (C), 1968, 351.
 ${ }^{9}$ DMS UV Atlas of Organic Compounds, Butterworths and Verlag Chemie/Weinheim, vol. III, 1967.

[^3]: ${ }^{10}$ R. Huisgen and K. Herbig, Annalen, 1965, 688, 98.
 ${ }_{11}$ R. Huisgen, K. Herbig, A. Seigl, and H. Hübner, Chern. Ber., 1969, 99, 2526.

 12 R. M. Acheson, Adv. Heterocyclic Chem., 1963, 1, 125.
 ${ }^{13}$ E. Winterfeld and H. Preuss, Chem. Ber., 1966, 99, 450.

[^4]: ${ }_{15}$ V. Boekelheide and J. E. Notte, J. Org. Chem., 1969, 34, 4134.
 ${ }_{16}$ R. M. Acheson and N. D. Wright, Chem. Comm., 1971, 1421.

[^5]: ${ }^{17}$ L. F. Fieser and M. Fieser, ' Reagents for Organic Syntheses,' Wiley, New York, 1967, p. 1140 .
 18 J. M. F. Gagan, D. Phil. Thesis, Oxford University, 1965.

